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Diabetic encephalopathy (DE) is often a complication in patients with Alzheimer’s disease due to high blood sugar induced by
diabetic mellitus. Ergothioneine (EGT) and hispidin (HIP) are antioxidants present in Phellinus linteus. Methylglyoxal (MGO), a
toxic precursor of advanced glycated end products (AGEs), is responsible for protein glycation. We investigated whether a
combination EGT and HIP (EGT+HIP) protects against MGO-induced neuronal cell damage. Rat pheochromocytoma (PC12)
cells were preincubated with EGT (2 μM), HIP (2 μM), or EGT+HIP, then challenged with MGO under high-glucose condition
(30 μM MGO+30mM glucose; GLU+MGO) for 24–96 h. GLU+MGO markedly increased protein carbonyls and reactive
oxygen species in PC12 cells; both of these levels were strongly reduced by EGT or HIP with effects comparable to those of
100 nM aminoguanidine (an AGE inhibitor) but stronger than those of 10μM epalrestat (an aldose reductase inhibitor).
GLU+MGO significantly increased the levels of AGE and AGE receptor (RAGE) protein expression of nuclear factor
kappa-B (NF-κB) in the cytosol, but treatment with EGT, HIP, or EGT+HIP significantly attenuated these levels. These results
suggest that EGT and HIP protect against hyperglycemic damage in PC12 cells by inhibiting the NF-κB transcription pathway
through antioxidant activities.

1. Introduction

In general, there is a higher prevalence of diabetes among
patients suffering from various neurodegenerative disorders,
such as Alzheimer’s disease (AD) [1]. Recently, several
reports revealed an epidemiological association between
diabetes mellitus (DM) and cognitive impairment known as
diabetic encephalopathy (DE), which has been recognized
as an important CNS complication of diabetes [2]. Accumu-
lating data indicate that DE results from neuronal cell
apoptosis in the hippocampal region due to brain insulin
deficiency [3], impaired brain insulin signaling [4], and
hyperglycemia-induced oxidative stress in the brain [5].

Glucose and other reducing sugars are important gly-
cating agents; however, the most reactive and physiologically
relevant glycating agents are the dicarbonyls, in particular

methylglyoxal (MGO). Excessive glucose causes the accu-
mulation of MGO and advanced glycation end products
(AGE). MGO can react with amino acids to induce protein
glycation and consequently form AGE [6]. Many studies
have revealed an association between MGO and AGEs in
the pathogenesis of cognitive disorders such as DE and AD
[7, 8]. In addition, the importance of the receptor for
advanced glycation end products (RAGE), which function
as signal-transducing cell surface accepters for AGE in DE
and for β-amyloid in AD, was recently highlighted [9].
MGO is more toxic and reactive than glucose and forms
adducts with proteins, phospholipids, and nucleic acids.
MGO exposure itself, without hyperglycemia, can induce
diabetes-like complications [10]. Hyperglycemic condition
is known to activate both oxidative stress and inflammatory
pathways. The interaction of these two pathways complicates
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the hyperglycemia-mediated neuronal damage. Oxidative
stress-mediated inflammation is known to execute NF-κB,
activator protein-1 (AP-1), and MAPK pathways [11].

Ergothioneine (2-mercaptohistidine trimethylbetaine;
EGT), which is formed in some bacteria and fungi but not
in animals [12], is known to be present in the mammalian
brain at 0.2–1.0mg per 100 g tissue [13]. In humans, EGT
is derived from a plant-based diet, primarily from edible
mushrooms. In vitro studies have shown that EGT possesses
antioxidant, antiradiation, and anti-inflammatory activities
[14, 15], and sufficient evidence suggests that EGT functions
as a physiological antioxidant [15]. EGT also protects neu-
rons from cytotoxicity induced by various neurotoxins,
including N-methyl-D-aspartate, β-amyloid, and cisplatin
[16–18]. In our previous study, we demonstrated that EGT
protects against learning and memory deficits in aging mice
treated with Aβ [19] or D-galactose [20] by improving
parameters related to oxidative stress. However, little is
known about the effects of EGT on MGO-induced injuries
in neurons.

Hispidin (HIP), 6-(3,4-dihydroxystyryl)-4-hydroxy-2-
pyrone, is a phenolic compound first purified from Inonotus
hispidus [21]. Later, it was found in medicinal mushrooms,
particularly the genus Phellinus (a traditional medicinal
mushroom used in Asian countries for the treatment of
various diseases). HIP has garnered significant attention
due to its antioxidant [22], anti-inflammatory [23], antipro-
liferative, and antimetastatic effects [24]. HIP also protects
against peroxynitrite-mediated DNA damage and prevents
hydroxyl radical generation [25, 26]. In addition, HIP pos-
sesses potent aldose reductase and protein glycation inhibi-
tory activity [27, 28] and acts as an antidiabetic agent by
preventing beta cells from the damage by reactive oxygen spe-
cies (ROS) in diabetes [29, 30]. Importantly, protein kinase
Cβ (PKCβ) expression in humans is activated during high
blood sugar or diabetic conditions, whereas HIP can inhibit
PKC expression and prevent diabetic complications [26].

Liu et al. [31] used high-glucose concentration (35mM)
rather than normal-glucose concentration (5.5mM) to
induce AGE formation. Miller et al. [32] indicated that a
high-glucose environment (30mM D-glucose) alone does
not induce apoptosis within 7 days of incubation and that a
combination of high glucose with glyoxalase I (an MGO-
metabolizing enzyme) inhibitor can maintain cells under
hyperglycemic conditions. To reduce reaction time, we use
MGO and high-glucose concentration as a high-sugar con-
centration. Few studies have explored the ameliorative effects
of EGT, HIP, or a combination EGT and HIP on MGO-
induced injuries in neuronal cells. In this study, we therefore
employed rat pheochromocytoma (PC12) cells to investigate
the cytoprotective effect and possible mechanistic actions
of HIP, EGT, and their combination against neurotoxicity
induced by MGO and a high-glucose concentration.

2. Materials and Methods

2.1. Chemical Reagents. PC12 cells (BCRC 60048) were
purchased from the Food Industry Research & Develop-
ment Institute (Hsinchu, Taiwan). EGT, HIP, L-glutamine,

sodium bicarbonate (NaHCO3), horse serum (HS), fetal
bovine serum (FBS), penicillin, streptomycin, MTT: (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
tetrazolium, and all other reagents were purchased from
Sigma Chemical Company (St. Louis, MO, USA). 2′,7′-
Dichlorofluorescein diacetate (H2DCFDA) was purchased
from Molecular Probes Inc. (Eugene, OR, USA). Well plates
were bought from FALCON (Becton Dickinson, NJ, USA).

2.2. Preparation of PC12 Culture. Rat pheochromocytoma
(PC12 cells (BCRC 60048)) was obtained from the Food
Industry Research & Development Institute (Hsinchu,
Taiwan) and maintained in 5% FBS, 10% HS, 84% RPMI,
1% NEAA with 2mM L-glutamine containing 1.5 g/L
sodium bicarbonate, and antibiotics (100U/mL penicillin
and 100μg/mL streptomycin) at 37°C in a humidified
atmosphere with 5% CO2. The medium was replaced every
2 days. Cells were seeded at a density of 1× 105 cells/well onto
a 24-well plate for 24h before sample treatment.

2.3. Cell Viability Assay. Cells were seeded at a density of
1× 105 cells/well onto a 24-well plate (FALCON, Becton
Dickinson, NJ, USA) 24 h before the treatment. The cells
were divided in eight groups: (A) control (CON), (B) hyper-
glycemic conditions (30μM MGO+30mM D-glucose
(GLU+MGO group)), (C) 30mM mannitol group (exclud-
ing the impact of glucose osmosis), (D) epalrestat (EPA,
10μM, aldose reductase inhibitor), (E) 100nM aminoguani-
dine (AMG, AGE inhibitor), (F) 2μM EGT, (G) 2μM HIP,
and (H) EGT+HIP (2μM+2μM). Groups B and C were
only treated with GLU+MGO or mannitol for 24–96 h.
PC12 cells were added to groups D, E, F, G, and H and
allowed to stand for 2 h. Then, GLU+MGO was added to
the five groups and the cells were incubated for 24–96 h.
Using 0.4% trypan blue dye, cell viability was calculated with
a hemocytometer in an inverted microscope (BestScope
International Limited, Beijing, China) at 100x magnification.
The percentage of cell viability was calculated as follows: cell
viability on treatment/cell viability in control× 100%. All
tests were performed at least in triplicate, and graphs were
plotted using an average of three measurements.

2.4. Measurement of Intracellular ROS. Intracellular ROS
levels were measured using the fluorogenic probe 2′,7′-
dichlorodihydrofluorescein diacetate (H2DCFDA) to detect
H2O2 levels, as previously described [33]. Cells were seeded
at 1× 106 cells/mL in a 10 cm dish and incubated for 24 h.
Cells in the D, E, F, G, and H groups were incubated for
2 h, then GLU+MGO was added and incubated for 24,
48, and 72h. Then, H2DCFDA (5μM) was added at
37°C for 30min, and the cells were centrifuged at 4°C,
900g for 5min. The cell pellet was collected, and 1mL
of 1×PBS was added and mixed before being transferred
to a flow cytometer tube for measurement of ROS level
using flow cytometry.

2.5. Measurement of Protein Carbonyl. Protein carbonyl
content was measured as described by Reznick and Packer
[34] with minor modifications. Cells (2× 106 cells/mL) were
seeded in a 6-well plate and incubated for 24 h. Groups D,
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E, F, G, and H were pretreated with GLU+MGO for 2 h
and incubated with GLU+MGO for 24, 48, and 72 h. Then,
the cells were centrifuged at 1500 rpm for 5min, collected,
and mixed to 1.5-fold with Triton X-100 (0.5%/PBS). These
cells were frozen in liquid nitrogen for 1min and placed in
a water bath at 37°C for 5min. Next, the cells were centri-
fuged at 4°C, 12,000×g for 10min. To collect protein,
100μL of supernatant and 0.5mL of 10mM DNPH/2N
HCl were mixed in the dark at room temperature and kept
for 1 h with shaking every 15min. The protein was precipi-
tated by adding 0.6mL of 20% TCA and centrifugation at
10000 rpm for 10min. The supernatant was removed, and
the precipitate was washed thrice with ethanol/ethyl acetate
(1 : 1, v/v) to remove residual DNPH. The precipitate was
dissolved using 1mL of 6M guanidine-HCl (pH2.3) and
incubated at 37°C for 1 h. Then, the sample was centrifuged
at 12000 rpm for 15min. The absorption of protein car-
bonyl was measured at 370nm using a spectrophotometer
(E370= 2.2× 103M−1 cm−1 terms of protein carbonyl).

2.6. Determination of AGE and RAGE. The levels of AGE
and RAGE were assessed using ELISA kit (Cell Biolabs
Inc. CA, USA) according to the manufacturer’s instructions.
We detected AGE content by carboxymethyllysine (CML).
CML, also known as N(epsilon)-(carboxymethyl) lysine, is
an advanced glycation end product (AGE) found on proteins
and lipids as a result of oxidative stress and chemical glyca-
tion. The quantity of AGE adduct in protein samples is
determined by comparing its absorbance (450 nm) with that
of a known AGE-BSA standard curve. The minimum detect-
able concentration was 0.39μg/mL for AGEs and 0.41 ng/mL
for RAGE.

2.7. Measurement of Protein Expression of NF-κB with
Western Blotting. After incubation with GLU+MGO, cells
were collected and resuspended in radio immunoprecipita-
tion assay (RIPA) buffer (Millipore, Bedford, MA, USA)
containing inhibitor cocktail (protease and phosphatase
inhibitor) to obtain whole cell lysates. Cytoplasmic and
nuclear lysates were isolated by NE-PER nuclear and cyto-
plasmic extraction reagents (Thermo Scientific, Rockford,
IL, USA) according to manufacturer’s protocol. Total protein
contents of whole cell lysates or cytoplasmic and nuclear
extracts were assayed using Bradford’s reagent (Bio-Rad
Hercules, CA, USA). Then, a portion of the protein (50μg)
was subjected to 10% SDS-PAGE and transferred onto the
PVDF membranes. After blocking with 5% skimmed milk
for 2 h at 37°C, the membranes were incubated with primary
antibodies (IκBα (Santa Cruz Biotechnology) at 1 : 500
dilution, nuclear factor-kappa B (NF-κB) p65 (Santa Cruz
Biotechnology) at 1 : 200 dilution, and β-actin (Santa Cruz
Biotechnology) at 1 : 500 dilution). After being washed
with Tris-buffered saline with Tween 20 (TBS-T), the mem-
branes were then incubated with goat anti-rabbit horse-
radish peroxidase-conjugated secondary antibodies (Sigma,
St. Louis, MO) for 1 h at 1 : 2000 dilution at room tem-
perature. The immunoreactive bands were visualized using
an enhanced chemiluminescence kits (Amersham; ECL kits)

and quantified with densitometry analysis—Amersham
Imager 600 (GE, USA). β-Actin was used as a loading control.

2.8. Statistical Analysis. Data are expressed as means± SD
and analyzed using one-way ANOVA followed by Fisher’s
protected LSD test for multiple comparisons of group
means. All statistical analyses were performed using SPSS
for Windows, version 10 (SPSS, Inc.); a P value< 0.05 is
considered statistically significant [35].

3. Results

3.1. Effects of High-Glucose Concentration on PC12 Cell
Viability. As shown in Figure 1, after treatment with
GLU+MGO for 24, 48, and 72 h, the viability of PC12 cells
significantly decreased with time compared with treatment
with GLU or MGO only (P < 0 05). After treatment of
PC12 cells with GLU+MGO for 72 h, the cell viability
decreased to about 45%, which was lower than that after
treatment with GLU (78%) or MGO (75%). Therefore, we
chose 30mM GLU and 30μM MGO for the hyperglycemic
condition for PC12 cells.

3.2. Effects of EGT, HIP, and EGT+HIP on PC12 Cell
Viability at High-Glucose Concentration. Figure 2 shows that
the viability of cells treated with GLU+MGO was signifi-
cantly decreased with increasing culture time (70%, 50%,
and 45% at 24, 48, and 72h, resp.). On the contrary, the cell
viability of the group treated with mannitol to induce high
osmotic pressure was above 80% even after 72 h of incuba-
tion, indicating that GLU+MGO decreases cell viability by
other actions such as glycation besides high osmotic pressure.
However, both EGT (2μM) and HIP (2μM) alone signifi-
cantly attenuated cytotoxicity induced by GLU+MGO.
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Figure 1: Effects of glucose (GLU), methylglyoxal (MGO), and
GLU+MGO on viability of PC12 cells. Cell viability was estimated
by trypan blue dye exclusion method. Values (means± SD of
triplicate tests) without a superscript letter are significantly
different (P < 0 05).
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EGT and HIP were significantly more effective than 10μM
EPA and 100nM AMG (55% and 72% at 72 h of incubation)
(P < 0 05). The cell viability of the EGT+HIP group
increased to 82–90% after 24, 48, and 72 h of incubation,
and the viability was not significantly different (P > 0 05)
from that in the EGT or HIP group.

3.3. Effects of EGT, HIP, and EGT+HIP on Protein Carbonyl
Levels in PC12 Cells under Hyperglycemic Condition. As
shown in Figure 3, treatment with GLU+MGO significantly
increased protein carbonyl levels in PC12 cells at each incu-
bation time (24, 48, and 72h), and the highest level was
detected at 48 h of incubation. Treatment with EGT alone
significantly decreased protein carbonyl, and the effect of
EGT was roughly comparable to those of 10μM EPA and
100nM AMG. HIP alone significantly decreased protein
carbonyls at 48 and 72 h, but not at 24 h, of incubation, and
EGT+HIP produced no synergistic inhibition on protein
carbonyls, as compared with the GLU+MGO group.

3.4. Effects of EGT, HIP, and EGT+HIP on ROS in PC12 Cells
under Hyperglycemic Condition. As shown in Figure 4(a),
after 48 and 72 h of incubation, the ROS levels in PC12 cells
induced by GLU+MGO (36% and 43.6%) were significantly
increased, as compared with that in the control group (12.7%
and 15.3%, at 48 and 72 h, resp.). In the mannitol group,
the ROS levels (12.1% at 48 h and 18.5% at 72 h) were not
significantly different from those of the control. The result
revealed that the intracellular ROS production induced by
GLU+MGO was not due to the osmotic effect. In addition,

intracellular ROS levels in the EGT, HIP, and EGT+HIP
groups were significantly decreased (to 28.1%, 25.2%, and
23.4% after 72 h of incubation, resp.), as compared with
that in the GLU+MGO group (Figure 4(b)). Treatment
with EGT, HIP, or EGT+HIP inhibited ROS by 54.8%,
65.0%, and 71.4%, respectively, but no synergistic effect
of EGT and HIP was observed. The inhibitory effect of
EGT+HIP on ROS (71.4% at 72h) in PC12 cells under
high-glucose concentration was stronger than that of EPA
(21.6%) and AMG (61.1%).

3.5. Effects of EGT, HIP, and EGT+HIP on AGE and RAGE
Levels in PC12 Cells under Hyperglycemic Condition.
Table 1 shows that the AGE and RAGE levels were sig-
nificantly increased in the GLU+MGO group, as com-
pared with those in the control group (P < 0 05) during
incubation of PC12 cells for 72 and 96h. AGE levels were
significantly higher (at 72 h) in cells treated with EGT, HIP,
or EGT+HIP than in their absence (control), because after
adding the EGT, HIP, or EGT+HIP for 2 h, the cells were
added with GLU+MGO. After PC12 cells were treated with
GLU+MGO for 72h, AGE levels in cells treated with EGT,
HIP, or EGT+HIP were significantly lower (at 72 h) than
those of the GLU+MGO-treated group but were signifi-
cantly higher than those of the control group. AGE and
RAGE levels in the group treated with mannitol (to induce
high osmotic pressure) were significantly higher than those
in the control group (P < 0 05) but were significantly lower
than those in the GLU+MGO group after 72 h of incubation
(P < 0 05). AGE level of the mannitol-treated group was not
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Figure 2: Effects of ergothioneine (EGT), hispidin (HIP), and
EGT+HIP on viability of PC12 cells treated with 30mM
glucose and 30μM methylglyoxal (GLU+MGO). PC12 cells were
pretreated with epalrestat (EPA), aminoguanidine (AMG), ETG,
HIP, and EGT+HIP for 2 h and incubated with GLU+MGO or
mannitol for 24, 48, and 72 h. Cell viability was estimated by
the trypan blue dye exclusion method. Values (means± SD of
triplicate tests) without a superscript letter are significantly
different (P < 0 05).

Incubation time (h)
24 48 72

Pr
ot

ei
n 

ca
rb

on
yl

 (�휇
m

ol
/m

g 
pr

ot
ei

n)

0

500

1000

1500

2000

2500

A

C
B B

BCB

CC B

A

E E D
C
CD

F

A

D

BC
B

C
B

C
B

CON 
GLU + MGO 
Mannitol 
EPA 

AMG 
EGT 
HIP 
EGT + HIP 

Figure 3: Effects of ergothioneine (EGT), hispidin (HIP), and
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Figure 4: Effects of ergothioneine (EGT), hispidin (HIP), and EGT+HIP on ROS production in PC12 cells treated with 30mM glucose and
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(means± SD of triplicate tests) without a superscript letter are significantly different (P < 0 05).
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significantly different from that of the control group after
96 h incubation (P > 0 05), and RAGE level did not increase
after 72–96 h of incubation. These results indicate that
GLU+MGO increases AGE and RAGE levels by glycation
besides high osmotic pressure.

Treatment of EGT alone significantly decreased AGE and
RAGE levels, as compared with that of GLU+MGO, and the
effect was comparable to that of EPA and AMG treatment
alone. However, treatment of HIP alone only significantly
decreased AGE or RAGE levels at 96 h (but not at 72 h)
of incubation, as compared with that of GLU+MGO.
EGT+HIP significantly inhibited AGE and RAGE levels
induced by GLU+MGO, but the combined treatment only
significantly decreased AGE levels at 96 h of incubation, as
compared with the EGT treatment alone. The combined
treatment did not significantly decrease RAGE levels, as
compared with that of EGT alone at either 72 or 96 h
of incubation.

3.6. Effects of EGT, HIP, and EGT+HIP on NF-κB-Associated
Pathways in PC12 Cells under Hyperglycemic Condition.
As shown in Figure 5, after exposure of PC12 cells to
GLU+MGO for 72h, the cytoplasmic NF-κB was signifi-
cantly decreased (P < 0 05) and the nuclear NF-κB was
significantly increased (P < 0 05). However, no difference in
cytoplasmic IκB was observed between the GLU+MGO
and control groups (P > 0 05). In contrast, when PC12 cells
were pretreated with EPA, AMG, HIP, or EGT, nuclear
NF-κB activation induced by GLU+MGO was markedly
inhibited (P < 0 05). We also found that EGT+HIP increases
the regulation of cytoplasmic NF-κB expression and decrease
nuclear NF-κB expression compared with EGT or HIP alone.
The expression of cyt-IκB in cells treated with EGT+HIP
was somewhat decreased, but not significantly decreased,
as compared with that of the control. The quantified
results of cytoplasmic IκB and NF-κB and nuclear NF-κB
protein levels are presented in Figures 5(b), 5(c), and
5(d), respectively. These results suggest that EGT, HIP,
and EGT+HIP inhibit GLU+MGO-mediated inflammatory
responses through NF-κB cleavage from IκB.

4. Discussion

The aim of this study was to evaluate the neuroprotective
effect of EGT, HIP, and EGT+HIP on hyperglycemic
condition-mediated cytotoxicity and the possible pathways
in PC12 cells for gaining insights to prevent cognitive
impairment induced by DM. In Figure 1, we provide the
evidence that GLU+MGO more strongly decreased the
cell viability in PC12 cells than did GLU or MGO alone.
Thus, GLU+MGO was used as a glycemic-inducing agent
in the following experiment. In our study, we found that
cytotoxicity, protein carbonyl levels, and ROS levels were
significantly increased under hyperglycemic condition. Both
EGT and HIP alone can increase cell viability, ameliorate
the antioxidant status, and reduce glycation levels in PC12
cells. Though EGT+HIP demonstrated higher cell viability,
ROS production, and cytoplasmic NF-κB expression than
EGT or HIP alone, no synergistic effect was observed.

Numerous studies have reported the role of EGT in
diseases and its physiological antioxidant activities under
experimental conditions involving oxidative stress [15].
Cheah et al. [36] demonstrated that declining EGT levels
in elderly subjects are associated with age and incidence of
mild cognitive impairment. EGT ameliorates the response
to acetylcholine in the arteries of rats with streptozotocin-
induced diabetes and reduces diabetic embryopathy in preg-
nant rats with diabetes, probably through the modulation of
hyperglycemia-mediated oxidative stress [37]. Servillo et al.
[38] indicated that the antioxidant mechanisms of EGT
may provide new perspectives in targeted therapies against
the production of ROS in diabetes. Our results also revealed
that EGT significantly decreased ROS and protein carbonyl
levels induced by GLU+MGO in PC12 cells. In addition,
EGT supplementation decreased the secretion of AGE and
RAGE in PC12 cells and inhibited the expression of the
NF-κB transcription factor in the nucleus. These results
demonstrate that EGT, through its antioxidant activities,
can mitigate the damage caused by DE.

HIP, a PKC inhibitor, possesses strong antioxidant, anti-
cancer, and antidiabetic activities [26, 29, 39]. HIP exhibits

Table 1: Effects of ergothioneine, hispidin, and ergothioneine + hispidin on production of advanced glycated end products and receptor for
advanced glycated end products in PC12 cells induced by glucose +methylglyoxal.

Treatments
AGE (ng/mL) RAGE (ng/mL)

72 h IP %3 96 h IP % 72 h IP % 96 h IP %

CON 191± 10a4 302± 13bc 2.8± 0.5a 11.4± 1.0a

Mannitol 230± 6bc 308± 10bc 24.9± 1.2b 24.1± 0.5c

GLU+MGO1 294± 18d 411± 11d 32.0± 1.6c 43.0± 1.1e

+EPA 235± 11bc 20.07 299± 9bc 27.25 32.6± 1.3c −1.88 25.1± 0.6c 41.63

+AMG 202± 9a 31.29 269± 8b 34.55 29.9± 1.0c 6.56 20.7± 1.7b 51.86

+EGT 264± 14c 10.20 275± 8b 33.09 26.9± 1.2b 15.94 20.3± 0.7b 52.79

+HIP 296± 14d −0.68 296± 10bc 27.98 31.7± 2.4c 0.94 28.6± 0.9d 33.49

+(EGT+HIP) 231± 10bc 21.43 233± 14a 43.31 24.5± 2.6b 23.44 22.9± 1.5bc 46.74
1GLU+MGO: 30mM glucose (GLU) and 30 μMmethylglyoxal (MGO); EPA: epalrestat; AMG: aminoguanidine. 2PC12 cells were pretreated with EPA, AMG,
ETG, HIP, and EGT+HIP for 2 h and incubated with GLU+MGO for 72 h and 96 h. 3IP% = 1 − sample/ GLU +MGO × 100. 4Values (means ± SD of
triplicate tests) without a superscript letter are significantly different (P < 0 05).
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potent α-glucosidase inhibitor activity, with IC50 value of
297μg/mL, and aldose reductase inhibitor activity, with
IC50 value of 48μg/mL [39]. These findings suggest that
HIP may be an effective antidiabetic agent. However, to the
best of our knowledge, no study has examined the action of
HIP against oxidative stress or the detailed molecular mech-
anism underlying its preventive effect against DE. Our
present results indicated that HIP significantly decreased
AGE and RAGE levels induced by GLU+MGO at 96 h of
incubation. In addition, HIP inhibited the levels of ROS
and protein carbonyl as well as the activation of NF-κB tran-
scription factor to obstruct mitochondria-associated apopto-
sis pathways, leading to an increase in cell viability. Epalrestat
is an aldose reductase inhibitor that is used for the improve-
ment of subjective neuropathy symptoms [40]. Recently,
hispidin was shown to exhibit potent aldose reductase inhib-
itory activity. Thus, we used epalrestat as a positive control to
understand whether hispidin has protective effects on PC12
cells in addition to aldose reductase inhibitory effect.

NF-κB is a pleiotropic regulator of many cellular sig-
naling pathways, providing a mechanism for the cells in
response to various stimuli associated with inflammation
and oxidative stress. IκB degradation triggers NF-κB release,
and the nuclear-translocated heterodimer (or homodimer)
can associate with the κB sites of promoter to regulate the
gene transcription [41]. NF-κB can regulate the transcription
of genes such as chemokines, cytokines, proinflammatory
enzymes, adhesion molecules, and other factors to modulate
the neuronal survival [41]. Both high glucose and ROS acti-
vate signal transduction cascade (PKC, mitogen-activated
protein kinases, and janus kinase/signal transducers and
activators of transcription) and transcription factors (NF-
κB, activated protein-1, and specificity protein 1) further
promote the formation of AGEs [42]. Morgan and Liu [43]
pointed out that ROS interacts with NF-κB signaling path-
ways in many ways. The transcription of NF-κB-dependent
genes influences the levels of ROS in the cell, and in turn,
the levels of NF-κB activity are regulated by the levels of ROS.
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Figure 5: Effects of ergothioneine (EGT), hispidin (HIP), and EGT+HIP on cytoplasm IκB (Cyt-IκB), cytoplasm NF-κB (Cyt-NF-κB), and
nuclear NF-κB (Nu-NFκB) protein expression in PC12 cells treated with 30mM glucose and 30μM methylglyoxal GLU+MGO) or 30mM
mannitol (to exclude the impact of glucose osmosis). β-Actin serves as an internal control. PC12 cells were pretreated with epalrestat (EPA),
aminoguanidine (AMG), ETG, HIP, and EGT+HIP for 2 h and incubated with GLU+MGO for 72 h. A: control; B: GLU+MGO; C: 30mM
mannitol; D: 10 μM EPA; E: 100 nM AMG; F: 2μM EGT; G: 2μM HIP; H: 2 μM EGT+ 2 μM HIP. (b–d) Quantitative data for Cyt-IκB,
Cyt-NF-κB, and Nu-NF-κB expression. A portion of the protein (50 μg) was loaded to 10% SDS-PAGE. Values (means± SD of triplicate tests)
without a superscript letter are significantly different (P < 0 05).
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It is true that blots of cyt-NFκB had higher density than
those of Nu-NFκB, but this only occurred in the control
group. In contrast, in GLU+MGO-treated PC12 cells, Nu-
NFκB expression was significantly increased, and cyt-NFκB
expression was decreased. Besides, ROS, protein carbonyl,
and AGE levels were significantly induced by GLU+MGO.
Thus, our data suggested that GLU+MGO increased NF-
κB translocation. The present study showed that EGT and
HIP protect PC12 cell damage under high-glucose condition
by inhibiting NF-κB transcription cascade to inhibit ROS
production and AGE formation.

A previous study reported that the binding of AGE to
RAGE induces pathophysiological cascades linked to the
downstream activation of NF-κB, which in turn leads to
ROS generation [11] and inflammatory processes [44].
Haslbeck et al. [45] reported that the AGE/RAGE/NF-κB
pathway may contribute to the pathogenesis of polyneuropa-
thy in impaired glucose tolerance. NF-κB is a transcription
factor that upregulates the gene expression of proinflamma-
tory cytokines and also is responsible for the induction of
neuronal apoptosis. Activation of NF-κB also suppresses
the expression of antioxidant genes by downregulating the
Nrf-2 pathway and thus indirectly weakening the innate anti-
oxidant defense [46]. Several natural inhibitors of NF-κB
such as curcumin, resveratrol, and melatonin have been
used in experimental diabetic animals. The use of NF-κB
inhibitors can prevent the AGE-mediated proinflammatory
cytokine production and thus halts the events associated
with neuroinflammation [11].

Our results showed that the AGE/RAGE/NF-κB system
was significantly activated in the GLU+MGO-treated

cells but was markedly inhibited by EGT+HIP. These
results suggest that EGT+HIP protects PC12 cells against
GLU+MGO-induced cytotoxicity by inhibiting the AGE/
RAGE/NF-κB pathway. We hypothesize that EGT+HIP
involved two quite different pathways in synergistic effects
of glycation; one was the inhibition of aldose reductase
activity (HIP) [39], and the other was the inhibition of
the production of reactive oxygen species in the AGE/
RAGE/NF-κB pathway (EGT) [38]. Thus, we speculate that
EGT, HIP, and EGT+HIP have the potential to improve
DE induced by DM and that their effects are comparable to
those of AMG (an AGE inhibitor) added at 100 nM and
better than those of EPA (an aldose reductase inhibitor)
added at 10μM.

Combination of EGT and HIP had the ability of the
synergistic effects of inhibition of the formation of AGE
to inhibit the AGE/RAGE/NF-κB pathway; however, EGT
and HIP did not exhibit a synergistic effect in increasing
cell viability and decreasing protein carbonyl and ROS
levels. However, EGT and HIP did not exhibit a synergistic
effect in increasing cell viability and decreasing protein car-
bonyl and ROS levels. Intriguingly, our results displayed
that the treatment with EGT in combination with HIP
(EGT+HIP) was more effective than that with EGT or HIP
alone in inhibiting the AGE/RAGE/NF-κB pathway induced
by GLU+MGO in PC12 cells. Thus, we speculated that
EGT+HIP plays synergistic role in antiglycation activity,
but not antioxidant activity.

Evidence shows that tea polyphenols have strong MGO-
trapping abilities to form mono- and di-MGO adducts under
physiological conditions (pH7.4, 37°C) [47, 48]. Shao et al.
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Figure 6: Proposed protective pathways of ergothioneine and hispidin against glycation induced by glucose +methylglyoxal in PC12 cells.
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[49] also reported that apple polyphenol-phloretin traps
more than 80% MGO within 10min, and phloridzin traps
more than 70% MGO within 24 h under physiological
conditions. Thus, HIP could trap MGO and lead to decreased
AGE formation. In addition, S-cysteinyl compounds could
react with polyphenol (catechin, chlorogenic acid, dihydro-
caffeic acid, hydroxytyrosol, nordihydroguaiaretic acid, and
rosmarinic acid) to form S-cysteinyl polyphenols under
peroxidase-catalyzed oxidation [50]. Thus, we speculated
that EGT could react with HIP to decrease the MGO-
trapping ability of HIP. Therefore, this may explain why no
synergistic effect in antioxidant activity of EGT+HIP in
protecting PC12 cells.

5. Conclusion

In conclusion, the present study shows that HIP inhibits
aldose reductase activity and reduces AGE/RAGE levels
(i.e., the antiglycation pathway). HIP may also trap MGO
directly [47–49]. HIP+EGT further reduces the activation
of NF-κB leading to reduced inflammation and oxidative
response in PC12 cells (Figure 6). In contrast, EGT can
reduce AGE formation primarily through its antioxidant
capacity. EGT and HIP do not show a synergistic protective
effect in PC12 cells, possibly because EGT may react with
HIP in vitro. In vivo studies are required to elucidate
whether EGT and HIP exert a synergistic effect on protection
against DE.
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